• 个人简介

    a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b) a3b3=(ab)(a2+ab+b2)a^3-b^3=(a-b)(a^2+ab+b^2) a3+b3=(a+b)(a2ab+b2)a^3+b^3=(a+b)(a^2-ab+b^2) (ab)2=a22ab+b2(a-b)^2=a^2-2ab+b^2 (a+b)2=a2+2ab+b2(a+b)^2=a^2+2ab+b^2 (ab)3=a33a2b+3ab2b3(a-b)^3=a^3-3a^2b+3ab^2-b^3 (a+b)3=a3+3a2b+3ab2+b3(a+b)^3=a^3+3a^2b+3ab^2+b^3 (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc $$(a+b)^2+(b+c)^2+(a+c)^2=2a^2+2b^2+2c^2+2ab+2bc+2ac $$a2+b2=i=1nxi2\sqrt{a^2 + b^2} = \sqrt{\sum_{i=1}^n x_i^2} ab=ab\sqrt{ab}=\sqrt{a}*\sqrt{b} $$ax^2+bx+c=0(a!=0) x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} $$$$两点坐标(x_1,y_2),(x_2,y_2) d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} 中点p的坐标为\frac{(x_1+x_2)}{2},\frac{(y_1+y_2)}{2} $$$$\pi = \lim_{n\to\infty} 4\sum_{k=1}^n \frac{(-1)^{k+1}}{2k-1} $$圆柱面积2πrh+2πr2圆柱面积2\pi rh+2\pi r^2 圆面积πr2圆面积 \pi r^2 正方形面积l2正方形面积l^2 球体积43πr3球体积\frac{4}{3}\pi r^3
  • 通过的题目

  • 最近活动

    This person is lazy and didn't join any contests or homework.
  • 最近编写的题解

题目标签

聪明人游戏
4
深搜 广搜
1
广搜
1
大沥2021
1